Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488511

RESUMO

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Assuntos
Anticorpos Neutralizantes , Vírus da Parainfluenza 3 Humana , Humanos , Proteínas Virais de Fusão/genética , Epitopos , Anticorpos Antivirais
2.
Nat Commun ; 15(1): 1335, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351001

RESUMO

Many pathogenic viruses rely on class I fusion proteins to fuse their viral membrane with the host cell membrane. To drive the fusion process, class I fusion proteins undergo an irreversible conformational change from a metastable prefusion state to an energetically more stable postfusion state. Mounting evidence underscores that antibodies targeting the prefusion conformation are the most potent, making it a compelling vaccine candidate. Here, we establish a computational design protocol that stabilizes the prefusion state while destabilizing the postfusion conformation. With this protocol, we stabilize the fusion proteins of the RSV, hMPV, and SARS-CoV-2 viruses, testing fewer than a handful of designs. The solved structures of these designed proteins from all three viruses evidence the atomic accuracy of our approach. Furthermore, the humoral response of the redesigned RSV F protein compares to that of the recently approved vaccine in a mouse model. While the parallel design of two conformations allows the identification of energetically sub-optimal positions for one conformation, our protocol also reveals diverse molecular strategies for stabilization. Given the clinical significance of viruses using class I fusion proteins, our algorithm can substantially contribute to vaccine development by reducing the time and resources needed to optimize these immunogens.


Assuntos
Vacinas , Proteínas Virais de Fusão , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Conformação Proteica
3.
Mol Pharm ; 20(9): 4687-4697, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37603310

RESUMO

Current seasonal influenza vaccines are limited in that they need to be reformulated every year in order to account for the constant mutation of the virus. Hemagglutinin (HA) immunogens have been developed using a computationally optimized broadly reactive antigen (COBRA) methodology, which are able to elicit an antibody response that neutralizes antigenically distinct influenza strains; however, subunit proteins are not immunogenic enough on their own to generate a substantial immune response. Due to this, different delivery strategies and adjuvants can be used to improve immunogenicity. Recently, we reported a new coordination polymer composed of the dipeptide carnosine and zinc (ZnCar) that is able to deliver protein antigens along with CpG to generate a potent immune response. In the present work, ZnCar was used to deliver the COBRA HA immunogen Y2 and the adjuvant CpG. We incorporated Y2 into ZnCar using two different methods to assess which would be the most immunogenic. Mice vaccinated with Y2 and CpG complexed with ZnCar showed an improved humoral and cellular response when compared to mice vaccinated with soluble Y2 and CpG. Further, we demonstrate in vitro that when Y2 and CpG are coordinated with ZnCar, they are protected from degradation at 40 °C for 3 months or 24 °C for 6 months. Overall, ZnCar shows promise as a delivery vehicle for subunit vaccines, given its superior immunogenicity and in vitro storage stability.


Assuntos
Carnosina , Vacinas contra Influenza , Influenza Humana , Animais , Camundongos , Humanos , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Polímeros
4.
Acta Crystallogr D Struct Biol ; 79(Pt 9): 830-836, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561403

RESUMO

Colibactin is a genotoxic natural product produced by select commensal bacteria in the human gut microbiota. The compound is a bis-electrophile that is predicted to form interstrand DNA cross-links in target cells, leading to double-strand DNA breaks. The biosynthesis of colibactin is carried out by a mixed NRPS-PKS assembly line with several noncanonical features. An amidase, ClbL, plays a key role in the pathway, catalyzing the final step in the formation of the pseudodimeric scaffold. ClbL couples α-aminoketone and ß-ketothioester intermediates attached to separate carrier domains on the NRPS-PKS assembly. Here, the 1.9 Šresolution structure of ClbL is reported, providing a structural basis for this key step in the colibactin biosynthetic pathway. The structure reveals an open hydrophobic active site surrounded by flexible loops, and comparison with homologous amidases supports its unusual function and predicts macromolecular interactions with pathway carrier-protein substrates. Modeling protein-protein interactions supports a predicted molecular basis for enzyme-carrier domain interactions. Overall, the work provides structural insight into this unique enzyme that is central to the biosynthesis of colibactin.


Assuntos
Escherichia coli , Mutagênicos , Humanos , Mutagênicos/metabolismo , Escherichia coli/genética , Amidoidrolases
5.
Curr Opin Virol ; 61: 101337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544710

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) continue to be a global burden to infants, the elderly, and immunocompromised individuals. In the past ten years, there has been substantial progress in the development of new vaccine candidates and therapies against these viruses. These advancements were guided by the structural elucidation of the major surface glycoproteins for these viruses, the fusion (F) protein and attachment (G) protein. The identification of immunodominant epitopes on the RSV F and hMPV F proteins has expanded current knowledge on antibody-mediated immune responses, which has led to new approaches for vaccine and therapeutic development through the stabilization of pre-fusion constructs of the F protein and pre-fusion-specific monoclonal antibodies with high potency and efficacy. In this review, we describe structural characteristics of known antigenic sites on the RSV and hMPV proteins, their influence on the immune response, and current progress in vaccine and therapeutic development.


Assuntos
Metapneumovirus , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Idoso , Metapneumovirus/metabolismo , Anticorpos Antivirais , Anticorpos Neutralizantes , Proteínas Virais de Fusão/química , Infecções por Vírus Respiratório Sincicial/prevenção & controle
6.
Commun Biol ; 6(1): 454, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185989

RESUMO

Influenza virus poses an ongoing human health threat with pandemic potential. Due to mutations in circulating strains, formulating effective vaccines remains a challenge. The use of computationally optimized broadly reactive antigen (COBRA) hemagglutinin (HA) proteins is a promising vaccine strategy to protect against a wide range of current and future influenza viruses. Though effective in preclinical studies, the mechanistic basis driving the broad reactivity of COBRA proteins remains to be elucidated. Here, we report the crystal structure of the COBRA HA termed P1 and identify antigenic and glycosylation properties that contribute to its immunogenicity. We further report the cryo-EM structure of the P1-elicited broadly neutralizing antibody 1F8 bound to COBRA P1, revealing 1F8 to recognize an atypical receptor binding site epitope via an unexpected mode of binding.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Humanos , Hemaglutininas , Vírus da Influenza A Subtipo H1N1/genética , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
7.
Methods Mol Biol ; 2673: 17-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258904

RESUMO

Understanding the epitopes of antibodies elicited by infection and vaccination is often useful in immunogen design. In this chapter, we describe biolayer interferometry (BLI)-based methods to evaluate such epitopes and permit simultaneous analysis of antibodies from several sources, including monoclonal antibodies (mAbs) and polyclonal serum antibodies (pAbs). Using previously characterized antibodies with known epitopes as controls, the distribution of epitopes for the influenza hemagglutinin (HA) is shown for isolated human mAbs and pooled serum from HA-immunized mice. This method is versatile, high-throughput, and can be adapted to several antigens.


Assuntos
Anticorpos Monoclonais , Influenza Humana , Humanos , Animais , Camundongos , Epitopos , Hemaglutininas , Interferometria/métodos , Anticorpos Antivirais , Mapeamento de Epitopos/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza
8.
bioRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993551

RESUMO

Many pathogenic viruses, including influenza virus, Ebola virus, coronaviruses, and Pneumoviruses, rely on class I fusion proteins to fuse viral and cellular membranes. To drive the fusion process, class I fusion proteins undergo an irreversible conformational change from a metastable prefusion state to an energetically more favorable and stable postfusion state. An increasing amount of evidence exists highlighting that antibodies targeting the prefusion conformation are the most potent. However, many mutations have to be evaluated before identifying prefusion-stabilizing substitutions. We therefore established a computational design protocol that stabilizes the prefusion state while destabilizing the postfusion conformation. As a proof of concept, we applied this principle to the fusion protein of the RSV, hMPV, and SARS-CoV-2 viruses. For each protein, we tested less than a handful of designs to identify stable versions. Solved structures of designed proteins from the three different viruses evidenced the atomic accuracy of our approach. Furthermore, the immunological response of the RSV F design compared to a current clinical candidate in a mouse model. While the parallel design of two conformations allows identifying and selectively modifying energetically less optimized positions for one conformation, our protocol also reveals diverse molecular strategies for stabilization. We recaptured many approaches previously introduced manually for the stabilization of viral surface proteins, such as cavity-filling, optimization of polar interactions, as well as postfusion-disruptive strategies. Using our approach, it is possible to focus on the most impacting mutations and potentially preserve the immunogen as closely as possible to its native version. The latter is important as sequence re-design can cause perturbations to B and T cell epitopes. Given the clinical significance of viruses using class I fusion proteins, our algorithm can substantially contribute to vaccine development by reducing the time and resources needed to optimize these immunogens.

9.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851561

RESUMO

Computationally optimized broadly reactive antigens (COBRAs) are a next-generation universal influenza vaccine candidate. However, how these COBRAs induce antibody responses when combined with different adjuvants has not previously been well-characterized. Therefore, we performed in vivo studies with an HA-based H1 COBRA, Y2, and an NA-based N1 COBRA, N1-I, to assess this effect for the H1N1 subtype. We tested the adjuvants AddaVax, AddaS03, CpG, and Alhydrogel. AddaS03 performed the best, eliciting high IgG titers and hemagglutination inhibition (HAI) activity for Y2 immunizations. Interestingly, serum antibody epitopes were relatively similar across adjuvant groups. Moreover, following N1-I immunization with these adjuvants, AddaS03 also elicited the highest IgG and neuraminidase inhibition (NAI) titers against the 2009 pandemic virus, A/California/07/2009 (A/CA/09). These results inform adjuvant selection efforts for H1 and N1 COBRA HA and NA antigens in a mouse model.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Animais , Camundongos , Hemaglutininas , Neuraminidase , Formação de Anticorpos , Adjuvantes Imunológicos , Imunoglobulina G
10.
Viruses ; 15(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851691

RESUMO

Human metapneumovirus (hMPV) is an important cause of respiratory disease in immunocompromised individuals, yet hMPV infection has not been modeled before in immunocompromised animals. In this work, cotton rats S. hispidus immunosuppressed by cyclophosphamide were infected with hMPV, and viral replication and pulmonary inflammation in these animals were compared to those in normal hMPV-infected S. hispidus. The efficacy of prophylactic and therapeutic administration of the anti-hMPV antibody MPV467 was also evaluated. Immunosuppressed animals had higher pulmonary and nasal titers of hMPV on day 5 post-infection compared to normal animals, and large amounts of hMPV were still present in the respiratory tract of immunosuppressed animals on days 7 and 9 post-infection, indicating prolonged viral replication. Immunosuppression was accompanied by reduced pulmonary histopathology in hMPV-infected cotton rats compared to normal animals; however, a delayed increase in pathology and pulmonary chemokine expression was seen in immunosuppressed cotton rats. Prophylactic and therapeutic MPV467 treatments protected both upper and lower respiratory tracts against hMPV infection. The lung pathology and pulmonary expression of IP-10 and MIP-1α mRNA were reduced by therapeutic MPV467 administration. These results indicate that immunosuppressed cotton rats represent a useful model for studying hMPV pathogenesis and for evaluating therapeutics that could alleviate hMPV-induced disease in immunocompromised subjects.


Assuntos
Hospedeiro Imunocomprometido , Metapneumovirus , Infecções por Paramyxoviridae , Sigmodontinae , Animais , Humanos , Quimiocina CCL3 , Hospedeiro Imunocomprometido/imunologia , Terapia de Imunossupressão , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/virologia , Sigmodontinae/imunologia , Sigmodontinae/virologia , Modelos Animais de Doenças
11.
Viruses ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36680239

RESUMO

Neuraminidase (NA) is an important surface protein on influenza virions, playing an essential role in the viral life cycle and being a key target of the immune system. Despite the importance of NA-based immunity, current vaccines are focused on the hemagglutinin (HA) protein as the target for protective antibodies, and the amount of NA is not standardized in virion-based vaccines. Antibodies targeting NA are predominantly protective, reducing infection severity and viral shedding. Recently, NA-specific monoclonal antibodies have been characterized, and their target epitopes have been identified. This review summarizes the characteristics of NA, NA-specific antibodies, the mechanism of NA inhibition, and the recent efforts towards developing NA-based and NA-incorporating influenza vaccines.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Neuraminidase , Anticorpos Monoclonais , Anticorpos Antivirais , Influenza Humana/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza
12.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382536

RESUMO

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Assuntos
Anticorpos Biespecíficos , Humanos , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia
13.
J Immunol ; 210(1): 50-60, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351696

RESUMO

Streptococcus pneumoniae persists as a leading cause of bacterial pneumonia despite the widespread use of polysaccharide-based vaccines. The limited serotype coverage of current vaccines has led to increased incidence of nonvaccine serotypes, as well as an increase in antibiotic resistance among these serotypes. Pneumococcal infection often follows a primary viral infection such as influenza virus, which hinders host defense and results in bacterial spread to the lungs. We previously isolated human monoclonal Abs (mAbs) against the conserved surface Ag pneumococcal histidine triad protein D (PhtD), and we demonstrated that mAbs to this Ag are protective against lethal pneumococcal challenge prophylactically and therapeutically. In this study, we elucidated the mechanism of protection of a protective anti-pneumococcal human mAb, PhtD3, which is mediated by the presence of complement and macrophages in a mouse model of pneumococcal infection. Treatment with mAb PhtD3 reduced blood and lung bacterial burden in mice, and mAb PhtD3 is able to bind to bacteria in the presence of the capsular polysaccharide, indicating exposure of surface PhtD on encapsulated bacteria. In a mouse model of secondary pneumococcal infection, protection mediated by mAb PhtD3 and another mAb targeting a different epitope, PhtD7, was reduced; however, robust protection was restored by combining mAb PhtD3 with mAb PhtD7, indicating a synergistic effect. Overall, these studies provide new insights into anti-pneumococcal mAb protection and demonstrate, to our knowledge, for the first time, that mAbs to pneumococcal surface proteins can protect against secondary pneumococcal infection in the mouse model.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Epitopos , Pulmão , Vacinas Pneumocócicas , Anticorpos Antibacterianos , Proteínas de Bactérias
14.
Nat Commun ; 13(1): 7298, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435827

RESUMO

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Camundongos , Humanos , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Febre Hemorrágica da Crimeia/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Anticorpos Monoclonais
15.
J Virol ; 96(16): e0089622, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35916534

RESUMO

Among circulating influenza viruses in humans, H3N2 viruses typically evolve faster than other subtypes and have caused disease in millions of people since emerging in 1968. Computationally optimized broadly reactive antigen (COBRA) technology is one strategy to broaden vaccine-elicited antibody responses among influenza subtypes. In this study, we determined the structural integrity of an H3N2 COBRA hemagglutinin (HA), TJ5, and we probed the antigenic profile of several H3N2 COBRA HAs by assessing recognition of these immunogens by human B cells from seasonally vaccinated human subjects. Of three recently described COBRA H3 HA antigens (TJ5, NG2, and J4), we determined that TJ5 and J4 HA proteins recognize pre-existing B cells more effectively than NG2 HA and a wild-type Hong Kong/4801/2014 protein. We also isolated a panel of 12 H3 HA-specific human monoclonal antibodies (MAbs) and identified that most MAbs recognize both wild-type and COBRA HA proteins and have functional activity against a broad panel of H3N2 viruses. Most MAbs target the receptor-binding site, and one MAb targets the HA stem. MAb TJ5-5 recognizes TJ5 and J4 COBRA HA proteins but has poor recognition of NG2 HA, similar to the global B-cell analysis. We determined a 3.4 Å structure via cryo-electron microscopy of Fab TJ5-5 complexed with the H3 COBRA TJ5, which revealed residues important to the differential binding. Overall, these studies determined that COBRA H3 HA proteins have correct antigenic and structural features, and the proteins are recognized by B cells and MAbs isolated from seasonally vaccinated humans. IMPORTANCE Vaccine development for circulating influenza viruses, particularly for the H3N2 subtype, remains challenging due to consistent antigenic drift. Computationally optimized broadly reactive antigen (COBRA) technology has proven effective for broadening influenza hemagglutinin (HA)-elicited antibody responses compared to wild-type immunogens. Here, we determined the structural features and antigenic profiles of H3 COBRA HA proteins. Two H3 COBRA HA proteins, TJ5 and J4, are better recognized by pre-existing B cells and monoclonal antibodies from the 2017 to 2018 vaccine season compared to COBRA NG2 and a wild-type A/Hong Kong/2014 HA protein. We determined a cryo-electron microscopy (cryo-EM) structure of one MAb that poorly recognizes NG2, MAb TJ5-5, in complex with the TJ5 COBRA HA protein and identified residues critical to MAb recognition. As NG2 is more effective than TJ5 for the recent Hong Kong/2019 virus, these data provide insights into the diminished effectiveness of influenza vaccines across vaccine seasons.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vacinas contra Influenza , Influenza Humana , Anticorpos Monoclonais , Microscopia Crioeletrônica , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/química , Influenza Humana/imunologia , Influenza Humana/virologia
16.
Front Immunol ; 13: 941865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003370

RESUMO

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two leading causes of severe respiratory infections in children, the elderly, and immunocompromised patients. The fusion (F) protein is the major target of neutralizing antibodies. Recent developments in stabilizing the pre-fusion conformation of the F proteins, and identifying immunodominant epitopes that elicit potent neutralizing antibodies have led to the testing of numerous pre-fusion RSV F-based vaccines in clinical trials. We designed and tested the immunogenicity and protective efficacy of a chimeric fusion protein that contains immunodominant epitopes of RSV F and hMPV F (RHMS-1). RHMS-1 has several advantages over vaccination with pre-fusion RSV F or hMPV F, including a focus on recalling B cells to the most important protective epitopes and the ability to induce protection against two viruses with a single antigen. RHMS-1 was generated as a trimeric recombinant protein, and analysis by negative-stain electron microscopy demonstrated the protein resembles the pre-fusion conformation. Probing of RHMS-1 antigenicity using a panel of RSV and hMPV F-specific monoclonal antibodies (mAbs) revealed the protein retains features of both viruses, including the pre-fusion site Ø epitope of RSV F. Mice immunized with RHMS-1 generated neutralizing antibodies to both viruses and were completely protected from RSV or hMPV challenge. Overall, this study demonstrates protection against two viruses with a single antigen and supports testing of RHMS-1 in additional pre-clinical animal models.


Assuntos
Metapneumovirus , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas Virais , Idoso , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Epitopos , Humanos , Epitopos Imunodominantes/genética , Metapneumovirus/genética , Camundongos , Proteínas Recombinantes , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética , Vacinas Virais/genética
17.
Proc Natl Acad Sci U S A ; 119(25): e2203326119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696580

RESUMO

Human metapneumovirus (hMPV) is a leading cause of morbidity and hospitalization among children worldwide, however, no vaccines or therapeutics are currently available for hMPV disease prevention and treatment. The hMPV fusion (F) protein is the sole target of neutralizing antibodies. To map the immunodominant epitopes on the hMPV F protein, we isolated a panel of human monoclonal antibodies (mAbs), and the mAbs were assessed for binding avidity, neutralization potency, and epitope specificity. We found the majority of the mAbs target diverse epitopes on the hMPV F protein, and we discovered multiple mAb binding approaches for antigenic site III. The most potent mAb, MPV467, which had picomolar potency, was examined in prophylactic and therapeutic mouse challenge studies, and MPV467 limited virus replication in mouse lungs when administered 24 h before or 72 h after viral infection. We determined the structure of MPV467 in complex with the hMPV F protein using cryo-electron microscopy to a resolution of 3.3 Å, which revealed a complex novel prefusion-specific epitope overlapping antigenic sites II and V on a single protomer. Overall, our data reveal insights into the immunodominant antigenic epitopes on the hMPV F protein, identify a mAb therapy for hMPV F disease prevention and treatment, and provide the discovery of a prefusion-specific epitope on the hMPV F protein.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Virais , Metapneumovirus , Infecções por Paramyxoviridae , Proteínas Virais de Fusão , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Antígenos Virais/química , Antígenos Virais/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Humanos , Metapneumovirus/imunologia , Camundongos , Infecções por Paramyxoviridae/prevenção & controle , Prevenção Primária , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/imunologia
18.
J Immunol ; 209(1): 5-15, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697384

RESUMO

Computationally optimized broadly reactive Ag (COBRA) hemagglutinin (HA) immunogens have previously been generated for several influenza subtypes to improve vaccine-elicited Ab breadth. As nearly all individuals have pre-existing immunity to influenza viruses, influenza-specific memory B cells will likely be recalled upon COBRA HA vaccination. We determined the epitope specificity and repertoire characteristics of pre-existing human B cells to H1 COBRA HA Ags. Cross-reactivity between wild-type HA and H1 COBRA HA proteins P1, X6, and Y2 were observed for isolated mAbs. The mAbs bound five distinct epitopes on the pandemic A/California/04/2009 HA head and stem domains, and most mAbs had hemagglutination inhibition and neutralizing activity against 2009 pandemic H1 strains. Two head-directed mAbs, CA09-26 and CA09-45, had hemagglutination inhibition and neutralizing activity against a prepandemic H1 strain. One mAb, P1-05, targeted the stem region of H1 HA, but did not compete with a known stem-targeting H1 mAb. We determined that mAb P1-05 recognizes a recently discovered HA epitope, the anchor epitope, and we identified similar mAbs using B cell repertoire sequencing. In addition, the trimerization domain distance from HA was critical to recognition of this epitope by mAb P1-05, suggesting the importance of protein design for vaccine formulations. Overall, these data indicate that seasonally vaccinated individuals possess a population of functional H1 COBRA HA-reactive B cells that target head, central stalk, and anchor epitopes, and they demonstrate the importance of structure-based assessment of subunit protein vaccine candidates to ensure accessibility of optimal protein epitopes.


Assuntos
Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Influenza Humana , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle
19.
Front Cell Infect Microbiol ; 12: 824788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35155281

RESUMO

The gram-positive bacterium Streptococcus pneumoniae is a leading cause of pneumonia, otitis media, septicemia, and meningitis in children and adults. Current prevention and treatment efforts are primarily pneumococcal conjugate vaccines that target the bacterial capsule polysaccharide, as well as antibiotics for pathogen clearance. While these methods have been enormously effective at disease prevention and treatment, there has been an emergence of non-vaccine serotypes, termed serotype replacement, and increasing antibiotic resistance among these serotypes. To combat S. pneumoniae, the immune system must deploy an arsenal of antimicrobial functions. However, S. pneumoniae has evolved a repertoire of evasion techniques and is able to modulate the host immune system. Antibodies are a key component of pneumococcal immunity, targeting both the capsule polysaccharide and protein antigens on the surface of the bacterium. These antibodies have been shown to play a variety of roles including increasing opsonophagocytic activity, enzymatic and toxin neutralization, reducing bacterial adherence, and altering bacterial gene expression. In this review, we describe targets of anti-pneumococcal antibodies and describe antibody functions and effectiveness against S. pneumoniae.


Assuntos
Infecções Pneumocócicas , Adulto , Anticorpos Antibacterianos , Criança , Humanos , Infecções Pneumocócicas/microbiologia , Vacinas Pneumocócicas , Streptococcus pneumoniae/genética , Vacinas Conjugadas
20.
PNAS Nexus ; 1(5): pgac248, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712332

RESUMO

Invasive fungal infections cause over 1.5 million deaths worldwide. Despite increases in fungal infections as well as the numbers of individuals at risk, there are no clinically approved fungal vaccines. We produced a "pan-fungal" peptide, NXT-2, based on a previously identified vaccine candidate and homologous sequences from Pneumocystis, Aspergillus,Candida, and Cryptococcus. We evaluated the immunogenicity and protective capacity of NXT-2 in murine and nonhuman primate models of invasive aspergillosis, systemic candidiasis, and pneumocystosis. NXT-2 was highly immunogenic and immunized animals had decreased mortality and morbidity compared to nonvaccinated animals following induction of immunosuppression and challenge with Aspergillus, Candida, or Pneumocystis. Data in multiple animal models support the concept that immunization with a pan-fungal vaccine prior to immunosuppression induces broad, cross-protective antifungal immunity in at-risk individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...